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Introduction

Motivation

Michel Baranger (M.I.T., N.E.C.S.I., USA) dixit:

Twentieth-century theoretical physics came out of the relativistic
revolution and the quantum mechanical revolution. It was all about
simplicity and continuity (in spite of quantum jumps).

Its principal tool was calculus.

Its final expression was field theory.

Twenty-first-century theoretical physics is coming out of the chaos
revolution.

It will be about complexity and its principal tool will be the computer.

Its final expression remains to be found.
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Introduction

Motivation

Murray Gell-Mann (1969 Nobel Prize for Physics) dixit:

Our world can be seen as a huge complex system consisting of an
enormous number of interacting natural, social and artificial complex
systems.

We cannot successfully analyse this system by determining in advance a set
of properties or aspects that are studied separately and then recombining
those partial approaches in an attempt to form a picture of the whole.

Instead, it is necessary to look at the whole system, even if it means taking
a crude look, and then allowing possible simplifications to emerge from the
work.

Jesús Sánchez Dehesa Medidas de complejidad de polinomios ortogonales 6 / 51



Introduction

Quantifying complexity

Contemporary researchers in architecture, biology, computer science,
dynamical systems, engineering, finance, game theory, etc., have defined
different measures of complexity for each field.

Three questions that researchers frequently ask to quantify the complexity
of the thing (house, bacterium, computer problem, technological process,
investment scheme, ...) under study are

How hard is it to describe?

How hard is it to create?

What is its degree of organization?
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Introduction

Classifying complexity

To a large extent all the measures of complexity can be grouped in two
groups:

Extrinsic measures: they do depend on the context, such as e.g. the
algorithmic and computational complexities; they are closely related
to the time required for a computer to solve a given problem; so that
it depends on the chosen computer.

Intrinsic measures: they do not depend on the context but on the
probability density of the system under consideration
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Introduction

General purpose

To quantify how simple or how complex are the special functions of
Applied Mathematics, beginning by the classical or hypergeometric-type
orthogonal polynomials in a real continuous variable.

The issues

How do we understand by simplicity and complexity?

In what sense a certain mathematical function is simple and complex
another one?

are not at all simple.

There does not exist a unique notion of complexity to grasp our intuitive
notions in the appropriate manner.
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Introduction

Specific aim

To quantify how simple or how complex are the classical orthogonal
polynomials pn(x) by means of the complexity measures of its associated
Rakhmanov probability density.

Remark that, contrary to other complexity notions (algorithmic,
computational,...), the density-dependent complexities are intrinsic
properties of the polynomials.

Thus, the intrinsic complexity notions are closely related to the main
macroscopic features of the associated probability density of the
polynomials (irregularities, extent, fluctuations, smoothing,...).
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Entropy measures of a probability density

Entropy measures

Ordinary moments

〈rk〉 =

∫
rkρ(x)dx; k = 0, 1, 2, . . . ; r ≡ |x|

=⇒ Variance V [ρ] = 〈r2〉 − 〈r〉2

Entropy moments

Wq[ρ] =

∫
[ρ(x)]

q
dx = 〈ρq−1〉; q ≥ 1

=⇒ Rényi entropy Rq[ρ] =
1

1− q
ln

∫
[ρ(x)]

q
dx

Shannon entropy

S[ρ] =

∫
ρ(x) log ρ(x)dx

Fisher information

F [ρ] =

∫
|∇ρ(x)|2

ρ(x)
dx
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Entropy measures of a probability density

Comparación entrópica en densidades sencillas:

e.g.,
g(x) ∼ e−ax, f(x) ∼ e−ax + ε sin2(nx)

Función Entroṕıa Shannon Varianza Desequilibrio Información Fisher
g(x) 1.3485 0.07962 0.2690 9.3× 10−1

f(x) 1.3476 0.07966 0.2695 3.7× 103
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Complexity measures of a probability density

Complexity measures

Fisher-Shannon complexity

CFS[ρ] = F [ρ]× 1

2πe
exp (2S[ρ])

LMC complexity

CLMC[ρ] = W2[ρ]× exp (S[ρ])

Crámer-Rao complexity
CCR[ρ] = F [ρ]× V [ρ]
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Complexity measures of a probability density

Some properties:

Invariance under replication, translation and scaling transformations.

Minimal values at the two extreme cases:

completely ordered systems (e.g. Dirac delta distribution)
totally disordered systems (e.g. uniform distribution)

Remark:
The complexity measures quantify how easily a system may be modelled!
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Complexity measures of a probability density

What does complexity really mean in 3D?

Complexity measures how easily modelling a system may be.

From a physical point of view, a completely ordered system (e.g., a perfect
cristal with high internal structure) as well as a totally disordered one
(e.g., an isolated ideal gas), are not complex systems.

Between these two extreme cases, we find many others in which order and
disorder are involved simultaneously.

Jesús Sánchez Dehesa Medidas de complejidad de polinomios ortogonales 17 / 51



Application to orthogonal polynomials

1 Introduction

2 Entropy measures of a probability density

3 Complexity measures of a probability density

4 Application to orthogonal polynomials

5 Entropic moments (Lq-norms) of orthogonal polynomials

6 Complexity measures of Laguerre polynomials

7 Application to one-electron systems

8 Concluding remarks and open problems
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Application to orthogonal polynomials

Rakhmanov density of orthogonal polynomials

The spread of the hypergeometric orthogonal polynomials {pn(x)}
satisfying ∫

Ω
pn(x) pm(x)ω(x) dx = d2

n δmn

is given by the distribution of its associated Rakhmanov probability density

ρn(x) =
1

d2
n

p2
n(x)ω(x)
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Entropic moments (Lq -norms) of orthogonal polynomials

Entropic moments of P.O.s

The qth-power of the weighted Lq-norm is called entropic moment Wq:

Wq[ρ
({α})
n ] =

∫
∆

(
ρ({α})
n (x)

)q
dx =

∫
∆

((
p({α})
n (x)

)2
ω{α}(x)

)q
dx,

which are closely related to the Rényi entropy :

Rq[ρ
({α})
n ] =

1

1− q
lnWq[ρ

({α})
n ]; q > 0, q 6= 1,

The well-known Shannon entropy is the limiting case

lim
q→1

Rq[ρ
({α})
n ] = S[ρ({α})

n ] =

∫
∆
ρ({α})
n (x) ln ρ({α})

n (x)dx.
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Entropic moments (Lq -norms) of orthogonal polynomials

Methodology:

To evaluate the Lq-norms (or its qth-powers, the entropic moments) of the

real continuous orthogonal polynomials we use the linearization technique:

((
p({α})
n (x)

)2
)q

=
∞∑
i=0

ci p
({β})
i (x),

whose coefficients ci can be expressed in terms of multivariate

hypergeometric functions.
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Entropic moments (Lq -norms) of orthogonal polynomials

Linearization of the power of a polynomial

Our problem is to find the coefficients ci of the series such as((
p({α})
n (x)

)2
)q

=

∞∑
i=0

ci p
({β})
i (x),

for any real q > 0.

However, with the techniques we have up to now, we can obtain these
expansions only for positive integer powers 2q ∈ N:(

p({α})
n (x)

)2q
=

∞∑
i=0

ci p
({β})
i (x).
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Entropic moments (Lq -norms) of orthogonal polynomials

Linearization of Laguerre polynomials

We use the H.M. Srivastava linearization [1988]:

xµ
(
L(α)
n (tx)

)r
=

∞∑
i=0

ci(µ, r, t, n, α, γ) L
(γ)
i (x),

where the coefficients ci(µ, r, t, n, α, γ) are expressed as:

ci(µ, r, t, n, α, γ) = (γ + 1)µ

(
n+ α

n

)r

× F (r+1)
A

 γ + µ+ 1;

r︷ ︸︸ ︷
−n, . . . ,−n,−i

α+ 1, . . . , α+ 1︸ ︷︷ ︸
r

, γ + 1
;

r︷ ︸︸ ︷
t, . . . , t, 1

 ,

where F
(r+1)
A is a Lauricella function of type A of r + 1 variables.
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Entropic moments (Lq -norms) of orthogonal polynomials

Definition: The Lauricella function of type A of s variables is

F
(s)
A

(
a; b1, . . . , bs
c1, . . . , cs

;x1, . . . , xs

)
=

∞∑
j1,...,js=0

(a)j1+···+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj11 · · ·x
js
s

j1! · · · js!
.

It is a generalization of the Appell function F2 of two variables.
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Entropic moments (Lq -norms) of orthogonal polynomials

Entropic moments of Laguerre polynomials

Now, we apply the linearization

yαq
(
L(α)
n

(
y

q

))2q

=

∞∑
i=0

Γ(αq + 1)

(
n+ α

α

)2q

× F (2q+1)
A

(
αq + 1;−n, . . . ,−n,−i

α+ 1, . . . , α+ 1, 1
;

1

q
, . . . ,

1

q
, 1

)
L
(0)
i (y).

Entropic moment of order q of Laguerre polynomials

Wq[ρ
(α)
n ] =

Γ(αq + 1)

qαq+1

(
Γ(n+ α+ 1)

n! (Γ(α+ 1))2

)q
× F (2q)

A

(
αq + 1;−n, . . . ,−n
α+ 1, . . . , α+ 1

;
1

q
, . . . ,

1

q

)
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Complexity measures of Laguerre polynomials

Crámer-Rao complexity of Laguerre polys

The Rakhmanov probability density of the Laguerre polynomials L
(α)
n (x)

characterized by the orthogonality condition∫ +∞

0
L(α)
n (x)L(α)

m (x)xαe−xdx = δmn,

is defined by

ρL(x) =
[
L(α)
n (x)

]2
xαe−x.

Then, the Crámer-Rao complexity of the Laguerre polynomials is given by

CCR[ρL] = F [ρL]× V [ρL], (1)

where the variance is given by

V [ρL] = 2n2 + 2(α+ 1)n+ α+ 1, (2)
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Complexity measures of Laguerre polynomials

and the Fisher information has the value

F [ρL] =


4n+ 1, α = 0,
(2n+1)α+1

α2−1
, α > 1,

∞, α ∈ [−1,+1], α 6= 0,

(3)

respectively. Then one obtains the following value

CCR[ρL] =



8n3 + [8(α + 1) + 2]n2 + 6(α + 1)n + (α + 1), α = 0,

1
α2−1

[
4αn3 + (4α2 + 6α + 2)n2 + (4α2 + 6α + 2)n + (α + 1)2

]
, α > 1,

∞, otherwise,

for the Crámer-Rao complexity of Laguerre polynomials.
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Complexity measures of Laguerre polynomials

Fisher-Shannon complexity of Laguerre polys

Definition:

CFS [ρL] = F [ρL]× 1

2πe
exp(2S[ρL]), (4)

where the Shannon length or Shannon entropy power N [ρL] = exp(S[ρL])
is not yet known for all values of the degree n.

However, its asymptotics (large n) has been found to be

N [ρL] ≈ 2πn

e
. (5)

Then, Eqs.(3), (4) and (5) gives the following asymptotics for the

Fisher-Shannon complexity of the Laguerre polynomial L
(α)
n (x):

CFS [ρL] ≈



(
8π
e3

)
n3, α = 0,

4α
α2−1

(
π
e3

)
n3, α > 1,

∞, otherwise.
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Complexity measures of Laguerre polynomials

LMC complexity of Laguerre polys

Definition:
CLMC [ρL] = W2[ρL]× exp(S[ρL]).

where

the Shannon length N [ρL] is only known in the asymptotic case (see
Eq.5), while

the second-order entropic moment W2[ρL] has been recently shown to
be expressed in two following ways for all values of the degree n:

(i) In terms of the four-variate Lauricella function F
(4)
A

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
(ii) In terms of the multivariate Bell polynomials Bm,l(a1, a2 . . . , am−l+1)
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Complexity measures of Laguerre polynomials

Indeed,

(i) In terms of the four-variate Lauricella function F
(4)
A

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
:

W2[ρL] =

(
n!

Γ(α+ n+ 1)

)2 Γ(2α+ 1)

22α+1

(
n+ α
n

)4

×F (4)
A

(
2α+ 1;−n,−n,−n,−n
α+ 1, α+ 1, α+ 1, α+ 1

;
1

2
,
1

2
,
1

2
,
1

2

)
.(6)

(ii) In terms of the multivariate Bell polynomials Bm,l(a1, a2 . . . , am−l+1):

W2[ρL] =

[
4n∑
k=0

Γ(2α+ k + 1)

22α+k+1

(4)!

(k + 4)!
Bk+4,4

(
c
(n,α)
0 , 2!c

(n,α)
1 , ..., (k + 1)!c

(n,α)
k

)]
,

(7)

where the parameters c
(n,α)
t are given by

c
(n,α)
t =

√
Γ(n+ α+ 1)

n!

(−1)t

Γ(α+ t+ 1)

(
n
t

)
.
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Complexity measures of Laguerre polynomials

Numerics-1: Crámer-Rao complexity of HOPs. w.r.t. n

Figure : Crámer-Rao complexity measure for the Rakhmanov densities of the

Hermite Hn(x) (×), Laguerre L
(2)
n (x) (�) and Jacobi P

(2,2)
n (x) (•) polynomials

as a function of the degree n for n = 0, 1, . . . , 40.
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Complexity measures of Laguerre polynomials

Numerics-2: Fisher-Shannon complexity of HPOs. w.r.t. n
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Figure : Fisher-Shannon complexity measure for the Rakhmanov densities of the

Hermite Hn(x) (×), Laguerre L
(2)
n (x) (�) and Jacobi P

(2,2)
n (x) (•) polynomials

as a function of the degree n for n = 0, 1, . . . , 40.
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Complexity measures of Laguerre polynomials

Numerics-3: LMC complexity of HPOs. w.r.t. n

Figure : LMC complexity measure for the Rakhmanov densities of the Hermite

Hn(x) (×), Laguerre L
(2)
n (x) (�) and L

(50)
n (x) (�), and Jacobi P

(2,2)
n (x) (•) and

P
(50,50)
n (x) (◦) polynomials, as a function of the degree n for n = 0, 1, . . . , 30.
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Complexity measures of Laguerre polynomials

Numerics-4: Crámer-Rao complexity HPOs. w.r.t. α

Figure : Crámer-Rao complexity measure for the Rakhmanov densities of the

Laguerre L
(α)
2 (x) (solid line), and the Jacobi P

(α,0)
0 (x) (dashed line) and

P
(α,2)
2 (x) (dotted line) polynomials, as a function of the parameter α, for

1 < α < 10.
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Complexity measures of Laguerre polynomials

Numerics-5: Fisher-Shannon complexity of HPOs. w.r.t. α

Figure : Fisher-Shannon complexity measure for the Rakhmanov densities of the

Laguerre L
(α)
2 (x) (solid line), and the Jacobi P

(α,0)
0 (x) (dashed line) and

P
(α,2)
2 (x) (dotted line) polynomials, as a function of the parameter α, for

1 < α < 10.
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Complexity measures of Laguerre polynomials

Numerics-6: LMC complexity of HPOs. w.r.t. α

Figure : LMC complexity measure for the Rakhmanov densities of the Laguerre

L
(α)
2 (x) (solid line), and the Jacobi P

(α,0)
0 (x) (dashed line) and P

(α,2)
2 (x) (dotted

line) polynomials, as a function of the parameter α, for − 1
2 < α < 10.
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Application to one-electron systems

Hydrogenic Schrödinger equation

[
1

2
~∇2 + V (~r)

]
Ψnlm(~r) = EnΨnlm(~r) (8)

Quantum states for the Coulomb potential V (~r) = −Z
r

Energies: En = − Z2

2n2

Probability density: ρnlm(~r)= |Ψnlm(~r)|2 = R2
nl(r) |Ylm(θ, φ)|2

where

R2
nl(r) =

4Z3

n4
r̃−1ω2l+1(r̃)

[
L̃

(2l+1)
n−l−1(r̃)

]2

with

r̃ =
2Z

n
r; ωα(x) = xαe−x
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Application to one-electron systems

Hydrogenic spreading measures

The Heisenberg measure

V [ρnlm] =
1

4Z3
[n2(n2 + 2)− l2(l + 1)2]

with

- n = 1, 2, ...
- l = 0, 1, .., n− 1.

It doesn’t depend on m
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Application to one-electron systems

Entropy measures

The Fisher information

F [ρnlm] = 4

{∫ ∞
0

{
d

dr

[√
ω2l+1L

(2l+1)
n−l−1

]}2

dr

+Nn−l−1

∫
Ω

∣∣∣∣ ddθYlm(θ, 0)

∣∣∣∣2 dΩ

}

=
4Z3

n3
(n− |m|)

with

- n = 1, 2, ...
- l = 0, 1, .., n− 1.
- m = −l,−l + 1, ..., l

It doesn’t depend on l
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Application to one-electron systems

The Shannon entropy

S[ρnlm] = S[Rnl]× S[Ylm]

= A(n, l,m) +
1

2n
E1

[
L

(2l+1)
n−l−1

]
+ E

[
C

(|m|+ 1
2

)

n−|m|

]
− 3 logZ

where the entropic integrals

Ei[pk] := − 1

π

∫ b

a
xip2

k(x) log
[
p2
k(x)

]
ω(x)dx; i = 0, 1

cannot be explicitly calculated except in the two cases:
Circular states (n, l = m = n− 1)
Rydberg states (large and very large n)

In particular

S[ρ100] = 3 + log π − 3 logZ for the Ground state

and

S[ρn00] = 6 log n− log 2 + 2 log π + o(1) for (ns) Rydberg states
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Application to one-electron systems

Complexity measures

Cramér-Rao complexity

CCR[ρnlm] := F [ρnlm]× V [ρnlm]

=
n− |m|
n3

(
n2(n2 + 2)− l2(l + 1)

)2
LMC shape complexity

CLMC[ρnlm] := 〈ρnlm〉 × exp (S[ρnlm])

Since 〈ρnlm〉 = Z3D(n, l,m) one has

CLMC[ρnlm] = D(n, l,m)eB(n,l,m)

where

B(n, l,m) = A(n, l,m) +
1

2n
E1

[
L

(2l+1)
n−l−1

]
+ E

[
C

(|m|+ 1
2

)

n−|m|

]
and

A(n, l,m) and D(n, l,m) are explicitly known
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Application to one-electron systems

Fisher-Shannon complexity

CFS[ρnlm] := F [ρnlm]× 1

2πe
exp

(
2

3
S[ρnlm]

)
=

4(n− |m|)
n3

1

2πe
e

2
3
B(n,l,m)

For quasicircular states (n, l = n− 1),
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Application to one-electron systems

Quasicircular states (n, l = n− 1)
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Application to one-electron systems

Hydrogenic complexity remarks

The three complexity measures do not depend on Z!!!

Dependence on the quantum numbers (n, l,m)

- All increase with increasing n for (l,m) fixed.

- All decrease with increasing l for (n,m) fixed.

- All decrease with increasing m for (n, l) fixed.
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Application to one-electron systems

Entropic and complexity measures of the ground state hydrogenic atom
(n = 1, l = m = 0):

Entropic measures

Shannon entropy
S[ρ100] = 3 + log π − 3 logZ

Fisher information
F [ρ100] = 4Z2

Complexity measures

Cramér-Rao
CCR[ρ100] = 3

LMC shape

CLMC[ρ100] =
e3

8

Fisher-Shannon
CFS[ρ100] =

2e

π1/3
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Concluding remarks and open problems

Conclusions

We have obtained the weighted Lq norms (q ∈ N) and complexity
measures of the Rahkmanov densities associated to the Hermite,
Laguerre and Jacobi orthogonal polynomials.

They were expressed in terms of Lauricella functions of type FA for
the Hermite and Laguerre polynomials, and in terms of a
Srivastava-Daoust function for the Jacobi polynomial.

These expressions, together with the monotonicity of the
information-theoretic Rényi entropy, have been used to obtain bounds
on the Lauricella and Srivastava-Daoust functions.
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Concluding remarks and open problems

Open problems (Math.)

Search for recurrence formulas of these norms.

Reduction of the involved Lauricella and Srivastava-Daoust functions,
which will conduct to simpler expressions of the Lq norms and
complexity measures for the hypergeometric OPs.

Calculation of the exact expressions of the Lq norms for q ∈ R.

Extensions of these results to special functions other than the
hypergeometric OPs..
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