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Quantum Gauge field theory and matrix models

Quantum field theories use partition functions defined by functional
integrals

Z =

∫
e−S[A]DA(x),

where A(x) are Gauge fields

A(x) ∈ SU(n) or U(n).

Expectation values are expressions of the form

〈A(x1) · · ·A(xk )〉 =
1
Z

∫
A(x1) · · ·A(xk ) e−S[A]DA(x) .

’t Hooft question (1974): What happens as n→∞ ?



Applications of matrix models

Quantum Gauge field theory (2000’s): Large-n expansions of
Hermitian and non-Hermitian matrix models.

Non-perturbative effects in large-n expansions (2010’s):
Instantons, oscillatory terms, eigenvalue tunneling, phase
transitions, gap closing in eigenvalue distributions...

Physical Review Letters, Nuclear Physics B, Journal of High
Energy Physics,Annals of Physics...



Perturbative and non-perturbative effects

Physical magnitudes are often introduced in terms of divergent
perturbative series expansions

F (x) ∼
∑
k≥0

1
xk Fk , x → +∞.

Non-perturbative corrections are important

F (x) ∼
∑
k≥0

1
xk Fk +

∑
m

e−Amx G(m)(x).

Instantons: Re Am > 0. Oscillations: Re Am = 0.



MATRIX MODELS AND ORTHOGONAL POLYNOMIALS



Matrix models

Partition function:

Zn =
1
n!

∫
Γn

∏
j<k

(zj − zk )2 exp

(
−1

g

n∑
i=1

W (zi )

)
dnz,

where, in general, Γ is a path in the complex plane and W (z) is a
complex-valued function and g > 0.

”Physical form”:

Zn =
1
n!

∫
Γn

e−n2Sn(z)dnz,

where the discrete action Sn(z) is given by

Sn(z) =
1

gn2

n∑
i=1

W (zi )−
1
n2

∑
j<k

log(zj − zk )2.



Orthogonal polynomials

Heine’s formula:

Pn(z) =
1

n! Zn

∫
Γn

e−n2Sn(z)
n∏

i=1

(z − zi ) dnz.

∫
Γ

Pn(z)zk e−
1
g W (z)dz = 0, k = 0, . . . ,n − 1.



How to calculate Zn ?

Zn = h0h1 · · · hn−1

where
hk =

∫
Γ

Pk (z)2e−
1
g W (z)dz.

If there is a three-term recursion relation

zPk (z) = Pk+1(z) + sk Pk (z) + rk Pk−1(z).

then hk = rk hk−1 and

Zn = hn
0
∏n−1

k=1 rn−k
k



t’ Hooft sequences and large-n limit

Zn =
1
n!

∫
Γn

∏
j<k

(zj − zk )2 exp

(
−1

g

n∑
i=1

W (zi )

)
dnz,

t’ Hooft sequences: We take sequences of coupling constants of the
form

gn =
t
n
,

where t is fixed (t’ Hooft parameter).



The free energy

Main objects: the free energy:

Fn = − 1
n2 log |Zn(gn)|.

and its planar limit F = limn→∞ Fn.
Physical magnitudes:

Entropy = F ′(t), Specific heat = F ′′(t).

Phases of the model = Analyticity regions of F (t)

Critical points= Singularities tc of F (t).



Basic questions

1 Existence of F .

2 Existence of large-n asymptotic expansions of Fn.



Saddle point method and eigenvalue density

The saddle points of the action Sn(z) are the solutions
z(n) = (z1, . . . , zn) of

1
g

W ′(zi ) =
∑
j 6=i

2
zi − zj

,

Requirements

As n→∞ there exists a condensate of saddle points with a unit
normalized density ρ(z) (eigenvalue density)

1
n

n∑
i=1

δ(z − z(n)
i )→ ρ(z) |dz|.

with a support γ given by one or several connected arcs (CUTS)

γ = γ1 ∪ γ2 ∪ · · · γm



1 Each cut is close to a critical point of the potential W (z). The
number and form of the cuts depend on t .

2 The large-n limit of Sn(z) is given by the functional

S[ρ] =
1
t

∫
γ

W (z)ρ(z)|dz|− 1
2

∫
γ

|dz|
∫
γ

|dz ′| log(z−z ′)2ρ(z)ρ(z ′).

and satifies

Zn = exp
(
− n2S[ρ] + o(n2)

)
, as n→∞.

Hence the planar free energy F = Re S[ρ] is given by the total
electrostatic energy E

F = E =
1
t

∫
γ

V (z)ρ(z)|dz| −
∫
γ

|dz|
∫
γ

|dz ′| log |z − z ′|ρ(z)ρ(z ′),

where V (z) = Re W (z) ( Bessis-Itzykson-Zuber (BIZ) formula ).



How to calculate ρ(z) ?

Polynomials associated to saddle points (z(n)
1 , z(n)

2 , . . . , z(n)
n ) :

pn(z) =
∏

i

(z − z(n)
i ).

The saddle point equations imply the the second-order differential
equation

p′′n (z)− 1
gn

W ′(z) p′n(z) + F (z) pn(z) = 0

where

F (z) = − 1
gn

n∑
i=1

W ′(z)−W ′(z(n)
i )

z − z(n)
i

.



In the t’ Hooft limit

1
n

p′n(z)

pn(z)
=

1
n

n∑
i=1

1

z − z(n)
i

→ ω(z) =

∫
γ

ρ(z ′)|dz ′|
z − z ′

.

and it follows that (
1
t W ′(z)− 2ω(z)

)2
= R(z),

where R(z) is a rational function for potentials W (z) with rational
derivative W ′(z). This is the main tool to determine ρ(z).



Hermitian models

For Γ = R and real analytic potentials W (x) such that

lim
|x|→∞

W (x)

log |x |
=∞,

The eigenvalue density exists and

ρ(z) = equilibrium density of E [ρ] on R
= asymptotic zero density of Pn(z).

The planar free energy F exists and F = E .



For Hermitian models in the ONE-CUT case there exists a
perturbative series expansion

Fn − F (Gauss)
n ∼ F (0) +

1
n2 F (1) + · · ·+ 1

n2k F (k) + · · · .

where F (Gauss)
n is the free energy for the Hermitian Gaussian model

W (z) = z2/2.

Multi-cut case ?
Non-Hermitian models ?



NON-PERTURBATIVE TERMS in LARGE-n EXPANSIONS



Oscillatory terms

They arise in the large-n expansions of Hermitian models (equiilbrium
densities on R).

In the two-cut case γ = [a1,a2] ∪ [a3,a4] (a1 < a2 < a3 < a4)

Fn − F (Gauss)
n ∼ F (0) +

1
n2 log θ3(n x) +

1
n2 F (1) + · · · ,

where θ3 is the Jacobi elliptic function.

θ3(z) =
∞∑

k=−∞

qk2/2e2πikz , , q = exp
(
− π2/E ′′

)
.

and x is the charge contained in the cut [a3,a4] .

Formula derived by Bonnet-David-Eynard (2000) and proved by
Claeys-Grava-McLaughlin (2015, 75 pages) for polynomial W (z)
.



Instanton terms

Heuristic formulas derived by Mariño, Schiappa, Weiss,... (2006)
for general multi-cut models.

For example, in the two-cut case γ = γ1 ∪ γ2 they find a
non-perturbative term of the form

Fn − F (Gauss)
n ∼ F (0) +

1
n2 log θ3

( nA
2πi

)
+

1
n2 F (1) + · · ·

Using Jacobi’s triple identity this term leads to a sum of instanton
contributions to Fn of the form

1
n2

∑
m 6=0

e−mnA (−1)m

m(qm/2 − q−m/2)
.



The constant A is the potential barrier A = U
∣∣∣
γ2

− U
∣∣∣
γ1

between the

cuts (Instanton action), where the total potential

U(z) =
1
t

V (z)− 2
∫
γl

ln |z − z ′|ρ(z ′)|dz ′|,

is constant on each cut of the support of ρ(z):

U
∣∣∣
γi

= Ui , i = 1,2.

Physical interpretation

The instanton terms represent contributions to the partition function

Zn =
1
n!

∫
Γn

e−n2Sn(z)dnz,

corresponding to extremal densities ρe of the action S[ρ] in which
eigenvalue tunneling takes place.



Many doubts on the properties assumed for non-Hermitian models

Our aim (with G. Alvarez and E.Medina):

To investigate the large-n limit for exact non-Hermitian models

To use rigorous results from the theory of non-Hermitian
orthogonal polynomials : critical densities, S-property...



TWO EXACT MODELS

The Penner (Laguerre) model:

W (z) = z + log z.

The two-Penner (Jacobi) model:

W (z) = −µ+ log(1− z)− µ− log(z + 1).



THE BARNES G FUNCTION



The Barnes function is defined by the canonical product

G(1 + z) = (2π)z/2e−
1
2 (z+z2(1+γ))

∞∏
k=1

(
1 +

z
k

)k
e−z+z2/2k . (1)

It satisfies
G(1 + z) = Γ(z)G(z), G(1) = 1.

Main identity:

n−1∏
k=1

(k + α)n−k =
G(1 + n + α)

G(1 + α)Γ(1 + α)n .



Asymptotics of the Barnes function

As x →∞

ln G(1 + x) ∼ x2

2
ln x − 3

4
x2 +

x
2

ln(2π)− ln x
12

+ ζ ′(−1) + ϕ(x).

Here ϕ(x) is the divergent series

ϕ(x) =
∞∑

m=2

B2m

2m(2m − 2)

1
x2m−2 .

which is the genus expansion of the free energy of a one-dimensional
string theory on a circle.



As x →∞ two additional oscillatory terms appear

ln |G(1− x)| − x ln
∣∣∣∣sin(πx)

π

∣∣∣∣− 1
2π

Cl2(2πx) ∼

x2

2
ln x − 3

4
x2 +

x
2

ln(2π)− ln x
12

+ ζ ′(−1) + ϕ(x).

where Cl2(x) is the Clausen function

Cl2(x) =
∞∑

m=1

sin(mx)

m2 .



THE PENNER MODEL : W (z) = z + log z.



The path Γ encircles the positive real axis
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The associated orthogonal polynomials are proportional to the
Laguerre polynomials L(α)

n (z/g) with α = − 1
g . The recursion

coefficient is
rk = k g(kg − 1).



RESULTS

The partition function is given by

Zn = gn(n− 1
g )
(

1− e−i 2π
g

)n G(1 + n)G
(

1 + n − 1
g

)
G
(

1− 1
g

) .

The large-n expansion of Fn can be derived from the asymptotic
expansions of the Barnes function.



The saddle-points of the action are the zeros of

L(−1/gn)
n

( z
gn

)
.

We may use the results on the asymptotic zero distribution of
Laguerre polynomials obtained by

Martínez Finkelstein, Martínez Gonzalez, Orive 2001;
Kuijlaars- McLaughlin 2004: .
Diaz Mendoza, Orive 2011.



Phases of the Penner model

Weak-coupling phase 0 < t < 1

Large n expansion for ’t Hooft sequences gn = t/n

Fn ≈
(
−1

2
log t +

3
2

( t − 1
t

)
− 1

2

( t − 1
t

)2
log |t − 1|

)
− 1

n
ln(2π) +

1
12n2 ln n − 1

n2

(
ζ ′(−1)− 1

12
ln(1− t)

)
−
∞∑

k=2

B2k

2k(2k − 2)n2k

(
1 + t2k−2 ((1− t)2−2k − 1

))
.



The planar free energy exists and is given by

F = E = −1
2

log t +
3
2

( t − 1
t

)
− 1

2

( t − 1
t

)2
log |t − 1|.

The saddle points condensate on one-cut which closes as t → 1

Gap closing
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Strong-coupling phase 1 < t < +∞

Large n expansion for ’t Hooft sequences gn = t/n:

Fn ≈ 1
n

(
1
t
− 1
)

ln
∣∣∣sin

(πn
t

)∣∣∣+
1

2πn2 Cl
(

2πn
t

)
+

(
−1

2
log t +

3
2

( t − 1
t

)
− 1

2

( t − 1
t

)2
log |t − 1|

)
− 1

n
ln(2π) +

1
12n2 ln n − 1

n2

(
ζ ′(−1)− 1

12
ln(t − 1)

)
−
∞∑

k=2

B2k

2k(2k − 2)n2k

(
1 + t2k−2 ((t − 1)2−2k − 1

))
.

Then the planar free energy does not exist.



Kuijlaars-McLaughlin (KM) sequences

However, if we use sequences gn such that

limn→∞gnn = t and ∃ L = limn→∞ | sin(π/gn)|1/n ,

They lead to a term in the large-n expansion of the form(
1− 1

ngn

)
log
∣∣∣ sin

(
π

gn

) ∣∣∣1/n
,

and then the planar free energy does exist and is given by

F = E +
(1

t
− 1
)

log L,

where the total energy E is

E = −1
2

log t +
3
2

( t − 1
t

)
− 1

2

( t − 1
t

)2
log(t − 1).



The eigenvalue density depends not only on the value of the ’t Hooft
parameter t but also on L. Its support is of the form

γL = CL ∪ [a,b],

where CL is a closed loop. For L 6= 1 it is a two-cut support
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The total potential is constant on the cuts

U
∣∣∣
[a,b]

=
1
t

[
2− 1

t
− log t −

(
1− 1

t

)
log(t − 1)

]
,

with a potential barrier

U
∣∣∣
CL

− U
∣∣∣
[a,b]

= −log L.

This leads to an instanton action for L 6= 1 given by

A = − log L.

However, there are not instanton terms but oscillatory terms in the
expansion of Fn .



S-property:
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Phase transitions with KM sequences

At t = 1 there is a first-order phase transition at t = 1 for L 6= 1

∆F = 0, ∆F ′ = log L.

At t = 1 there is a continuous phase transition for L = 1.

∆F = ∆F ′ = 0, lim
t→1

F ′′ =∞.



THE TWO-PENNER MODEL :

W (z) = −µ+ log(1− z)− µ− log(z + 1),



Closely related to the Jacobi polinomials P(α,β)
n (z):

with
α =

µ+

g
, β =

µ−
g
.

Recurrence coefficient

rk =
4k(k + α)(k + β)(k + α + β)

(2k + α + β)2(2k + 1 + α + β)(2k − 1 + α + β)
.

Classical case: α, β > −1. Hermitian orthogonality on [−1,1].



We consider large-n limits with ngn → t > 0. If we denote

lim
n→∞

αn

n
=
µ+

t
≡ A, lim

n→∞

βn

n
=
µ−
t
≡ B.

There are five cases:
Martínez Finkelstein, Orive, Kuijlaars (2004, 2005)

There are three non-classical cases such that the Jacobi polynomials
P(α,β)

n (z) are orthogonal on a single path for appropriate conditions
on α and β.



RESULTS

If we take
α < −1, β > −1,

then the Jacobi polynomials are orthogonal on the integration path

-1 1

G-1

We consider large-n limits with

−1 < A < 0 < B,

or, equivalently,
µ+ < 0, µ− > 0, t > |µ+|,



The planar free energy

The partition function is given by

|Zn| = |sin(πα)|n G(1 + n)G(1 + n + α)G(1 + n + β)G(1 + n + α + β)

G(1 + α)G(1 + β)G(1 + 2n + α + β)
.

For t’ Hooft sequences gn = t/n the planar free energy F does not
exist.



The eigenvalue density

The saddle points of the action Sn are the zeros of P(αn−1,βn−1)
n (z).

We use the results on the asymptotic zero distribution of Jacobi
polynomials obtained by

Martínez Finkelstein, Orive (2005).



Kuijlaars-McLaughlin (KM) sequences

For KM sequences gn

limn→∞gnn = t and ∃ L = limn→∞ | sin(πAn)|1/n

the planar free energy F and the eigenvalue density ρ(z) exist and

F = E −
(

1 + A
)

log L.

where the total energy is

E = −(1 + A + B) ln 2 +
A2

2
ln |A|+ B2

2
ln B

− (1 + A)2

2
ln(1 + A)− (1 + B)2

2
ln(1 + B)

− (1 + A + B)2

2
ln(1 + A + B) +

(2 + A + B)2

2
ln(2 + A + B).



For KM sequences the support of the eigenvalue density is of the
form

γL = CL ∪ [a,b],

where CL is a closed loop. For L 6= 1 it is a two-cut support.

A=-2/3, B=1/2, L = e-1�4
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The total potential is z-independent on the cuts with a potential barrier

U
∣∣∣
CL

− U
∣∣∣
[a,b]

= log L

such that

U
∣∣∣
[a,b]

= −(2 + A + B) ln 2− (1 + A) ln 1 + A)− (1 + B) ln(1 + B)

−(1 + A + B) ln(1 + A + B) + 2(2 + A + B) ln(2 + A + B),

This leads to an instanton action for L 6= 1 given by

A = log L.

However, there are not instanton terms but oscillatory terms in the
expansion of Fn .



Phase transitions for KM sequences

There is a rich structure of phase transitions depending on the values
of the parameters µ± and t . For example

Gap closing as A→ −1 with A < −1, B > 0
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SOME CONCLUSIONS

For non-hermitian matrix models:

Due to the possible presence of non-perturbative oscillating
terms, ’t Hooft sequences do not always lead to a well-defined
planar free energy F .

Sequences different from ’t Hooft sequences with a well-defined
planar free energy are worth considering.

Instanton effects in large-n expansions are not always associated
with potential barriers.

Rigorous results on non-hermitian orthogonal polynomials should be
useful to understand non-perturbative phenomena in non-hermitian
matrix models.



OTHER INTERESTING MODELS



Multi-Penner models

W (z) =
k∑

i=1

ρi log(z − qi ).

String models and conformal Toda field theories. Heine-Stieltjes
polynomials.



The Gross-Witten-Wadia (GWW) model

Introduced in 1980.
It describes 2D Quantum Gauge theory on a lattice.
For ’t Hooft sequences it reduces to a modified Penner model

W (z) = t log z −
(

z +
1
z

)
,

on the unit circle Γ = C(0; 1).

Recently (Phys. Rev. Letters, April 2016) Buividovich, Dune and
Valgushev have found numerically a phase transition driven by a
gap closing and a cut birth at t = 2.


