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Quantum Gauge field theory and matrix models

Quantum field theories use partition functions defined by functional

integrals
z- / e S DA(x),

where A(x) are Gauge fields
A(x) € SU(n) or U(n).
Expectation values are expressions of the form

(AG) - AlXK)) = - / A(x1) e S DA(X).

't Hooft question (1974): What happens as n — co ?



Applications of matrix models

@ Quantum Gauge field theory (2000’s): Large-n expansions of
Hermitian and non-Hermitian matrix models.

@ Non-perturbative effects in large-n expansions (2010’s):
Instantons, oscillatory terms, eigenvalue tunneling, phase
transitions, gap closing in eigenvalue distributions...

@ Physical Review Letters, Nuclear Physics B, Journal of High
Energy Physics,Annals of Physics...



Perturbative and non-perturbative effects

Physical magnitudes are often introduced in terms of divergent
perturbative series expansions

1
F(x)~>" i Flo X = 400,
k>0

Non-perturbative corrections are important

1
Fx)~ > bt > e G (x).
m

k>0

Instantons: Re A, > 0. Oscillations: Re A, = 0.



MATRIX MODELS AND ORTHOGONAL POLYNOMIALS



Matrix models

Partition function:
Zy =+ [1(z - 2¢)? ex 1 zn: W(z) | d"z
n = nl "/-<k f k p g < i 3

where, in general, I is a path in the complex plane and W(z) is a
complex-valued function and g > 0.

"Physical form”:

Z, = l/ e TS @D gnz,
n' Jrn

where the discrete action Sp(2) is given by

1 & 1
S(z) = a7 > W(z)- = > log(z; — zk)?.
i=1 j<k



Orthogonal polynomials

Heine’s formula:

’
n(2) = n' Z,

n
/ e 5@ H(z —z)d"z.
r i=1

/P,,(z)z" e d"@iz -0, k=0,...,n—1.
g



How to calculate Z, ?

| Zy = hohy -+~ hn 1|

where
hk:/Pk(Z)ze_éW(z)dZ.
r

If there is a three-term recursion relation
ZPk(Z) = Pk+1 (Z) + SkPk(Z) + Iy Pr_4 (Z)

then hy = rchg—4 and

_ pnTyn—1 n—k
Zn = hg [Tk 1




t Hooft sequences and large-n limit

1 1 <
Zn = Tl /ng(zj — zc)? exp (‘Q ; W(Zi)> d"z,

t' Hooft sequences: We take sequences of coupling constants of the
form

)

gn=1
""n

where t is fixed (' Hooft parameter).



The free energy

@ Main objects: the free energy:

1
Fn= ra log |Zn(gn)!-

and its planar limit F = lim,_, . Fp.
@ Physical magnitudes:

Entropy = F'(t), Specific heat = F”(t).
@ Phases of the model = Analyticity regions of F(f)

@ Critical points= Singularities {; of F(t).



Basic questions

@ Existence of F.

@ Existence of large-n asymptotic expansions of Fj,.



Saddle point method and eigenvalue density

The saddle points of the action S,(z) are the solutions
2" = (z,...,z,) of

W=y

— Zj — Zj’
A
Requirements

As n — oo there exists a condensate of saddle points with a unit
normalized density p(z) (eigenvalue density)

1 n
- > d(z- 2™ = p(2) |dz|.
i=1

with a support v given by one or several connected arcs (CUTS)

Y=rUrU- - 9m



@ Each cutis close to a critical point of the potential W(z). The
number and form of the cuts depend on t.

@ The large-n limit of S,(z) is given by the functional

Sle] = /W |dz|~/|dz|/|dzuogz 2Ro(2)p(2).

and satifies
Zn = exp ( — S[p] + o(n2)>, as n— oo.

Hence the planar free energy F = Re S[p] is given by the total
electrostatic energy E

F=E= / V(2)p(2)/dz| - / dz] / 42|log|z — Z|p(2)p(2).

v Y v

where V(z) = Re W(z) ( Bessis-ltzykson-Zuber (BIZ) formula ).



How to calculate p(z) ?

Polynomials associated to saddle points (2", 2", ..., z") :

po(2) =]z~ Z").

The saddle point equations imply the the second-order differential
equation

Pi(2) = 5 W'(2) Ph(2) + F(2) pn(2) = 0

where
1 & Wi(z)— w'(z")

9n i=1 z-2z"

F(2) =



In the t’ Hooft limit

AR 1 1 [ ]

npa(z) Nz z" Jy Z2=27

and it follows that

(1w -2u2)" = A@).

where R(z) is a rational function for potentials W(z) with rational
derivative W’'(z). This is the main tool to determine p(z).



Hermitian models

For ' = R and real analytic potentials W(x) such that

W) _
x| =00 l0g | X]|

)

@ The eigenvalue density exists and

p(z) = equilibrium density of E[p] on R
= asymptotic zero density of P,(z).

@ The planar free energy F exists and F = E.



For Hermitian models in the ONE-CUT case there exists a
perturbative series expansion

1

1
Fn—F,(,GaUSS)NF(O)+?F(1)+"'+WF(,()+"'~

where F{%3%) is the free energy for the Hermitian Gaussian model
W(z) = z2/2.

@ Multi-cut case ?
@ Non-Hermitian models ?



NON-PERTURBATIVE TERMS in LARGE-n EXPANSIONS



Oscillatory terms

They arise in the large-n expansions of Hermitian models (equiilbrium
densities on R).

@ In the two-cut case v = [a1, @] U [a3, as] (a1 < a2 < a3 < aa)
1 1
F, — FlGauss)  FO) 4 5 logls(nx) + — FO 4o,

where 63 is the Jacobi elliptic function.
93(2) — Z qk2/2927rikz77 q=exp ( _ WZ/E//).
k=—o0
and x is the charge contained in the cut [as, as] .

@ Formula derived by Bonnet-David-Eynard (2000) and proved by
Claeys-Grava-McLaughlin (2015, 75 pages) for polynomial W(z)



Instanton terms

@ Heuristic formulas derived by Marifio, Schiappa, Weiss,... (2006)
for general multi-cut models.

@ For example, in the two-cut case v = 1 U 72 they find a
non-perturbative term of the form

(Gauss) nA 1 1
F, — FiGauss)  F(O) |oge3< I>+?F()+
Using Jacobi’s triple identity this term leads to a sum of instanton
contributions to F, of the form

Z e —mnA 71)m
2 = qm/2 q—m/2)'
m




-U
.
cuts (Instanton action), where the total potentiazl

between the
Y1

The constant A is the potential barrier A= U

U(z) = 1tV(z) — 2/ In|z — Z'|p(2')|dZ'],

is constant on each cut of the support of p(z):

Physical interpretation

The instanton terms represent contributions to the partition function

Zy= 1 [ ey,

= —
n' Jra

corresponding to extremal densities p, of the action S[p] in which
eigenvalue tunneling takes place.



Many doubts on the properties assumed for non-Hermitian models

Our aim (with G. Alvarez and E.Medina):

@ To investigate the large-n limit for exact non-Hermitian models

@ To use rigorous results from the theory of non-Hermitian
orthogonal polynomials : critical densities, S-property...



TWO EXACT MODELS
The Penner (Laguerre) model:
W(z)=z+logz.
The two-Penner (Jacobi) model:

W(z) = —pylog(1 — 2) — p_log(z + 1).



THE BARNES G FUNCTION



The Barnes function is defined by the canonical product

2 1 2(4 = ZNK ek
G(1 + 2) = (2m)*/2e 2= (D I (1 +R) e ZtE/2k (1)
k=1

It satisfies

Main identity:

-k G(1+n+a)
[ (ko= GO +a)f(1 +a)”



Asymptotics of the Barnes function

As x — oo

2 |
InG(1 + x) ~ X? Inx — %xZ v g In(2r) — % 4 (=1) + ().

Here o(x) is the divergent series

p(X) = Z 2m(2m — 2) x2m—-2"
2

which is the genus expansion of the free energy of a one-dimensional
string theory on a circle.



As x — oo two additional oscillatory terms appear

In|G(1 = x)| = xIn| S0 e 0mx) o
2m
x? 3, x In x
EmX—ZX +§|n(2)—ﬁ+<( ) Y(X)-
where Cly(x) is the Clausen function
> sin(mx
Clo(x) =Y p



THE PENNER MODEL : W(z) = z + log z.



The path I encircles the positive real axis

The associated orthogonal polynomials are proportional to the
Laguerre polynomials Lf,a)(z/g) with a = —15. The recursion
coefficient is

e = kg(kg —1).



RESULTS
The partition function is given by
» G(1 +n)G(1 tn- é)
6(1-3)

The large-n expansion of F, can be derived from the asymptotic
expansions of the Barnes function.

Zy=g"" P (1-e7'7)



The saddle-points of the action are the zeros of

L;;vgn)(gi).
n

We may use the results on the asymptotic zero distribution of
Laguerre polynomials obtained by

Martinez Finkelstein, Martinez Gonzalez, Orive 2001;
Kuijlaars- McLaughlin 2004: .
Diaz Mendoza, Orive 2011.



Phases of the Penner model

Weak-coupling phase 0 < t < 1

Large n expansion for 't Hooft sequences g, = t/n

1 /t—1y 1/t—1\2
o= (<ot 3 -3 1)

1 1 1 , 1
—nln(27r)+1znzlnn—nz(C(—1)—12In(1—t)>

k=2



The planar free energy exists and is given by
1 3/t-1 1/t—1\2
F—E——élogt—f' E(T) _§<T) log |t —1].

The saddle points condensate on one-cut which closes as t — 1

Gap closing

t=0.5 =09
0 .. 10

05 0s asvessete s o

05 -05 TR

=099




Strong-coupling phase 1 < t < +o0

Large n expansion for 't Hooft sequences g, = t/n:
1 /1 . 27N
Fn =~ n(t”)'”\s'”( )\*zmzc’(t>
1 3/t-1 1/t—1\2
+(—2Iogt+2( ; >_§( ; )Iog|t—1)

— 1EIn(27r)+1217lnn—l (C’(1)112In(t1)>

n2

o0
Box

@k e (TP ).
=2

Then the planar free energy does not exist.



Kuijlaars-McLaughlin (KM) sequences

However, if we use sequences g, such that
limy soogan =1 and 3 L=Ilim, |sin(7/gn)|"/",

They lead to a term in the large-n expansion of the form

(1 — njqn) Iog’sin <;n> ‘1/’7,

and then the planar free energy does exist and is given by

1
FfE+<?f1)IogL,
where the total energy E is

E:—%Iogt+g(%> —1($>2Iog(t—1).



The eigenvalue density depends not only on the value of the 't Hooft
parameter t but also on L. Its support is of the form

7= CLU]a,b],

where C; is a closed loop. For L # 1 it is a two-cut support

03 03
/“"-_ t=1.1,L=1 t=1.1,L=038
02 ¥ ‘. 02
i .,
H 0
01 H . 01 £ .
00 H “ s e e e s s 00 E N
01 ] . -0 .
1 . s
0. '\\_ K -02 d
03 -03
=0 00 05 10 15 0 “0s 00 0 10 1 0




The total potential is constant on the cuts

1

[a,b]:?[Q—%—logt—O —%)Iog(t—1)},

with a potential barrier

CL

= —log L.
[a,b] J

This leads to an instanton action for L # 1 given by
A= —logL.

However, there are not instanton terms but oscillatory terms in the
expansion of F, .



N Akt

A At
Yy / S s s aaa

N
\ i
e
”

S-property:




Phase transitions with KM sequences

@ Att =1 there is a first-order phase transition at t = 1 for L # 1

AF =0, AF =logL.

@ At t =1 there is a continuous phase transition for L = 1.

AF =AF =0, limF" = cc.
t—1



THE TWO-PENNER MODEL :

W(z) = —py log(1 — 2) — p—log(z + 1),



Closely related to the Jacobi polinomials P,(,a’m(z):

with " "
+ —
a=—, = —.
9 b 9
Recurrence coefficient
4k(k + a)(k + B)(k + a + B)

" Bkt atpRCk+T1+a+B)(2k—1+a+p)

Classical case: a, 3 > —1. Hermitian orthogonality on [-1,1].



We consider large-n limits with ng, — t > 0. If we denote

There are five cases:
Martinez Finkelstein, Orive, Kuijlaars (2004, 2005)

“A+B=-1
There are three non-classical cases such that the Jacobi polynomials

P,(,a’ﬁ)(z) are orthogonal on a single path for appropriate conditions
on « and 3.



RESULTS

If we take
a< -1, pg>-1,

then the Jacobi polynomials are orthogonal on the integration path

T
_

We consider large-n limits with
-1<A<0<B,

or, equivalently,
pr <0, po >0, t>|ugl




The planar free energy

The partition function is given by

" G(1+nG( +n+a)G(1+n+pB)G1 +n+a+ B)
G(1 +a)G(1+ B)G(1 +2n+ a + B)

|Zp| = |sin(7a)

For t' Hooft sequences g, = t/n the planar free energy F does not
exist.



The eigenvalue density

The saddle points of the action S, are the zeros of P~ "~ 1)(z),

We use the results on the asymptotic zero distribution of Jacobi
polynomials obtained by

Martinez Finkelstein, Orive (2005).



Kuijlaars-McLaughlin (KM) sequences

For KM sequences g,
limy,_oognn =1t and 3 L=Ilim,_ . |sin(rAn)|'/"

the planar free energy F and the eigenvalue density p(z) exist and
F-—E— (1 +A> log L.

where the total energy is

A2 B?
E=-(1 +A+B)In2+?In|A|+?InB

AR +A)—@m(1 +B)
_W'”“ +A+B)+WIn(2+A+B).



For KM sequences the support of the eigenvalue density is of the

form
YL = CL U [37 b]7

where C; is a closed loop. For L # 1 it is a two-cut support.

015p  A=2/3,B=1/2,L=¢"*
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The total potential is z-independent on the cuts with a potential barrier

=logL
[a,b] 9

Cr

such that

ay~ @HATBIN2=(1+A)nT+A) ~(1+B)in(1+B5)

-(1+A+B)In(1+A+B)+2(2+A+B)In(2+ A+ B),

This leads to an instanton action for L # 1 given by
A=logL.

However, there are not instanton terms but oscillatory terms in the
expansion of F, .



Phase transitions for KM sequences

There is a rich structure of phase transitions depending on the values
of the parameters u4 and t. For example

Gapclosingas A— —1withA< -1, B>0

2 A=-105,B=0.8




SOME CONCLUSIONS

For non-hermitian matrix models:

@ Due to the possible presence of non-perturbative oscillating
terms, 't Hooft sequences do not always lead to a well-defined
planar free energy F .

@ Sequences different from 't Hooft sequences with a well-defined
planar free energy are worth considering.

@ Instanton effects in large-n expansions are not always associated
with potential barriers.

Rigorous results on non-hermitian orthogonal polynomials should be
useful to understand non-perturbative phenomena in non-hermitian
matrix models.



OTHER INTERESTING MODELS



Multi-Penner models

k
W(z) =" pilog(z - q).
=1

String models and conformal Toda field theories. Heine-Stieltjes
polynomials.



The Gross-Witten-Wadia (GWW) model

@ Introduced in 1980.
@ |t describes 2D Quantum Gauge theory on a lattice.
@ For 't Hooft sequences it reduces to a modified Penner model

1
W(z) = tlogz — (2 + E)’
on the unit circle I = C(0; 1).
@ Recently (Phys. Rev. Letters, April 2016) Buividovich, Dune and

Valgushev have found numerically a phase transition driven by a
gap closing and a cut birth at f = 2.



