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§1 to §6 (pages 3–11) review carefully the formulas by Cotes

(1682–1716) (uniformly spaced nodes)
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§7 to §12 (pages 11-21): construction of quadrature formulas

with nonuniformly spaced nodes
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• Determinare
∫
y dx inter limites datos when several values

of y are known. [No notation for functional dependence like

modern f(x).]

• Integrale sumendum esse ab x = g usque ad x = g + ∆.

• t = x−g
∆ , ∆

∫
y dt, ab t = 0 usque ad t = 1.

• n+ 1 valores dati A, A′, A′′, A′′′,. . . , A(n).

• Corresponding values of t: a, a′, a′′, a′′′,. . . , a(n).
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• Y functionem algebraicam ordinis n:

A
(t− a′)(t− a′′)(t− a′′′) · · · (t− a(n))

(a− a′)(a− a′′)(a− a′′′) · · · (a− a(n))

+A′
(t− a)(t− a′′)(t− a′′′) · · · (t− a(n))

(a′ − a)(a′ − a′′)(a′ − a′′′) · · · (a′ − a(n))
+etc.

such that if t is put equal to a, a′, . . . , Y takes the values A,

A′,. . . [Lagrange interpolating polynomial.]

• To compute
∫
Y dt consider successively different parts of

Y .
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• Introduce

T = (t− a)(t− a′′)(t− a′′′) · · · (t− a(n))

= tn+1 + αtn + α′tn−1 + α′′tn−2 + etc.+ α(n).

• then, the numerators in Y are T
t−a, T

t−a′, . . .

• and the denominatorsM ,M ′,. . . the values of T
t−a, T

t−a′,. . . at

a, a′, . . . [Recall: no notation for functional dependence.] Thus:

Y =
AT

M(t− a)
+

A′T

M ′(t− a′)
+ etc
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• Let us compute M (similar for M ′, etc.)

T = tn+1 − an+1 + α(tn − an) + α′(tn−1 − an−1) + etc.

T

t− a
= tn + atn−1 + aatn−2 + etc.+ an

+ αtn−1 + αatn−2 + etc.+ αan−1

+ α′tn−2 + etc.+ α′an−2

+etc.etc.

+ α(n−1)

In t = a, this takes value nan + (n− 1)αan−1 + etc.+ α(n−1).

Thus M equals the value of dTdt at t = a, uti etiam aliunde constat.
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• Next find valorem integralis
∫
T dt
t−a :

1

n+ 1
+
a

n
+

aa

n− 1
+ etc.+ an

+
α

n
+

αa

n− 1
+ etc.+ αan−1

+
α′

n− 1
+ etc.+ α′an−2

+etc.etc.

+α(n−1).

[Which does not look too pretty?]
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• Quos terminos ordine sequente disponemus:

an + αan−1 + α′an−2 + etc.+ α(n−1)

+etc.
1

n− 1
(aa+ αa+ α′)

1

n
(a+ α)

1

(n+ 1)
,

and it is manifest that this is the result of multiplying T by

t−1 + 1
2t
−2 + +1

3t
−3 + 1

4t
−4 + etc., discarding the terms

with negative powers of t and replacing t by a. !!!
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• Set

T (t−1 +
1

2
t−2 + +

1

3
t−3 + +

1

4
t−4 + etc.) = T ′+ T ′′,

where T ′ represents the [n-th degree] polynomial [in t] that the

product contains. [Remember this formula. T ′ and T ′′ are cru-

cial later. Note their coefficients are linear in the coefficients

α, α′, . . . , of T .]

• Then
∫
T dt
t−a equals the value of T ′ at t = a.
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• To sum up, if R, R′, . . . denote the values of T
′

dT
dt

at a, a′, . . . ,

then
∫
Y dt is

RA+R′A′+R′′A′′+R′′′A′′′+ etc.+R(n)A(n),

which multiplied by∆ will be the approximate value of
∫
y dx.

• Theory replicated, now using the variable u = 2t−1 instead

of t. Function U = (u− b)(u− b′) . . . (u− b(n)) replaces T .

• Example: weights of Newton-Cotes formulas found with both

t and u. The latter exploits symmetry u 7→ −u.
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• Next Gauss shows how to express the value of a rational

function Z
ζ at the roots of a polynomial equation ζ′ = 0 as a

polynomial in those roots. [Recall that the set (field) of rational

expressions Q(ξ) coincides with the set of polynomials Q[ξ]

when ξ is algebraic.]

• A fully detailed numerical example is given.
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§13 to §14 (pages 22-24): error analysis
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• For function tm the error in the integral (from 0 to 1) is k(m)

with

Ram +R′a′m + etc.+R(n)a(n)m =
1

m+ 1
− k(m).

Multiply by tm−1 and sum to get:

R

t− a
+

R′

t− a′
+etc.+

R(n)

t− a(n)
= t−1+

1

2
t−2+

1

3
t−3+etc.−θ,

with

θ = kt−1 + k′t−2 + k′′t−3 + etc.

(k, k′, usque k(n) evanescere debere).
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[The sequences of true values 1/(m+1), approximate values

Ram + R′a′m + . . . and errors k(m) are represented here

by their Z-transforms or generating functions. These are the

Cauchy transforms
∫∞
−∞(t − x)−1dµ(x) of the true measure

dx in [0,1], the measure Rδa + R′δa′ + · · · associated with

the quadrature rule and the difference between both.]

[Note natural occurrence of the series t−1 + 1
2t
−2 + 1

3t
−3 +

etc., which appeared above like deus ex machina.]
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• Now recall T (t−1 + (1/2)t−2 + etc.) = T ′+ T ′′ to write

T

(
R

t− a
+

R′

t− a′
+ etc.+

R(n)

t− a(n)

)
= T ′+ T ′′ − Tθ.

• Pars prior . . . est function integra . . . ordinis n whose values at a, a′,. . . ,
are MR, M ′R′, . . . , i.e. those of T ′. So left-hand side is T ′.

• Hence we obtain the important relation

T ′′ = Tθ.

Therefore the error coefficients may be computed from the expansion of
T ′′/T .

• If y = K+K′t+K′′tt+etc., the error in
∫
y dt will be k(n+1)K(n+1)+

k(n+1)K(n+1) + etc. [Gauss can’t write reminder of Taylor polynomial.]
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§15 to §16 (pages 24–26): main idea
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• For any values of a, a′, . . . , the formula obtained is exact for

orders ≤ n.

• But for some values of a, a′, . . . , the formula may be exact

for higher degrees, as shown by the Cotes case with n even

[something Gauss has discussed in detail in §6].

• For higher order we need to successively annihilate the error

coefficients k(n+1), k(n+2), . . . (coefficients of t−n−1, t−n−2,

. . . in θ). [i.e. it is a matter of θ = T ′′/T = (t−1 + 1
2t
−2 +

· · · )− T ′/T being ‘small’. ]
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• Equivalently, we need to successively annihilate the coeffici-

ents of t−1, t−2, . . . in Tθ i.e. in T ′′. [Recall these are linear

in α, α′, . . . , hence the advantage in multiplying by T .]

• Since we have n + 1 free coefficients α, α′, . . . , we may

annihilate the n + 1 leading coefficients of T ′′ and achieve

degree 2n+ 1.

• In the simplest example, n = 0, coefficiens unicus of t−1

in producto (t+ α)(t−1 + 1
2t
−2 + 1

3t
−3 + etc.) evanescere

debet. As this is 1
2 + α, we have α = −1

2 or T = t− 1
2.
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• The cases n = 1 and n = 2 (two and three linear equations

to solve) also presented in detail; both in terms of t and u.

[Writing T (t)
∫ 1

0
dx
t−x =

∫ 1
0
T (t)−T (x)

t−x dx+
∫ 1

0
T (x)dx
t−x , we see

that T ′ =
∫ 1

0
T (t)−T (x)

t−x dx, T ′′ =
∫ 1

0
T (x)dx
t−x . After expansion,

T ′′ = t−1
∫ 1

0
T (x)dx+ t−2

∫ 1

0
xT (x)dx+ · · ·

Thus annihilation of coefficients of T ′′ is equivalent to ortho-

gonality of T (x) to 1, x, . . . ]
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[Note it is assumed without proof that the linear system for the

coefficients has a unique solution. Also assumed that T found

in this way has distinct real roots.]

[When the auxiliary variable u is used in lieu of t one has to

approximate by U ′/U

ϕ = u−1 +
1

3
u−3 +

1

5
u−5 + etc.

rather than t−1 + 1
2t
−2 + etc. by T ′/T ]
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• But this way, qui calculos continuo molestiores adducit, hic

ulterius non persequemur, sed ad fontem genuinum solutionis

generalis progrediemur.
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§17 to §21 (pages 26–36): a better way
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• Proposita fractione continua

ϕ =
v

w + v′

w′+ v′′
w′′+etc.

formentur duae quantitatum series V , V ′, etc. W , W ′, etc.

V = 0 W = 1

V ′ = v W ′ = wW

V ′′ = w′V ′+ v′V W ′′ = w′W ′+ v′W

V ′′′ = w′′V ′′+ v′′V ′ W ′′′ = w′′W ′′+ v′′W ′

etc.
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• Then

V

W
= 0

V ′

W ′
=

v

w
V ′′

W ′′
=

v

w + v′
w′

V ′′′

W ′′′
=

v

w + v′

w′+ v′′
w′′

and so on.
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• In addition, in the series

v

WW ′
−

vv′

W ′W ′′
+

vv′v′′

W ′′W ′′′
−
vv′v′′v′′′

W ′′′W iv
+ etc.

terminum primum = V ′
W ′

summam duorum terminum primorum = V ′′
W ′′

summam trium terminum primorum = V ′′′
W ′′′

and so on. Similarly we represent differentia inter ϕ and V ′
W ′,

V ′′
W ′′, etc.
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[Recall that in terms of the auxiliary variable u the aim is to approximate by
a rational function U ′/U (U of degree n+ 1, U ′ of degree n) the series

ϕ = u−1 +
1

3
u−3 +

1

5
u−5 + etc.]

• E formula 33 Disquisitionum generalium circa seriem infini-

tam . . . , [on the hypergeometric series (1812)] we transform ϕ

into
1

u−
1
3

u−
2·2
3·5

u−
3·3
5·7

u−
4·4
7·9

u−etc.
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• Here v = 1, v′ = −1
3, v′′ = − 4

15, etc. and w = w′ =

w′′etc. = u.

• So W = 1, W ′ = u, W ′′ = uu − 1
3, W ′′′ = u3 − 3

5u, etc.

[These are the monic Legendre polynomials, generated from

the three term recursion!]

• And V = 0, V ′ = 1, V ′′ = u, V ′′′ = uu − 4
15, etc. [The

associated polynomials of the three term recursion!]
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• If ϕ − V (m)

W (m) in seriem descendentem convertitur, the first

term is
2 · 2 · 3 · 3 · · ·m ·m u−(2m+1)

3 · 3 · · · (2m− 1)(2m− 1)
.

[In modern terminology, V
(m)

W (m) is the Padé approximation to ϕ

of degree (m− 1,m).] Thus if we set U = W (n+1) then Uϕ

is free of the powers u−1, . . . , u−(n+1).

• Therefore the abscissas have to be chosen as the roots of

the equation W (n+1) = 0. [Zeros of Legendre polynomial.]

30



Next Gauss:

• Provides a closed form expression for the monic Legendre

polynomials and discusses the relation to the hypergeometric

function.

• Presents similar analysis for t in lieu of u. [T is of course the

Legendre polynomial shifted to [0,1].]

• Gives explicit expression for the polynomial that yields the

weights.
31



[The relation

T ′ =
∫ 1

0

T (t)− T (x)

t− x
dx

we found before (resp. the corresponding formula that expres-

ses U ′ in terms of U ) is the well-known formula that relates the

associated (or numerator) polynomials to the shifted Legendre

polynomials T (resp. Legendre polynomials U ). I am thankful

to F. Marcellán for this observation.]
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§22 to §23 (pages 36–40): using the rules
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• For n = 0, . . . ,6 (one to seven nodes). Gauss provides:

1. Polynomials U , U ′, T , T ′.

2. Abscissas a, a′, . . . with 16 significant digits.

3. Weights R, R′, . . . with 16 significant digits. (For n ≥ 3 also decimal
logarithm with 10 significant digits.)

4. The polynomial that gives the weights.

5. The leading coefficient of the expansion of the error.
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• Methodi nostrae efficaciam ab oculos ponemos computando valores in-
tegralis

∫
dx

logx ab x = 100000 usque ad x = 200000 with rules with 1
to 7 nodes: (Bessel had computed 8406.24312)

8390.394608

8405.954599

8406.236775

8406.242970

8406.243117

8406.243121

8406.2431211

[There are 8392 prime numbers in the interval.]
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