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Singularly perturbed problems Fractional differential equations Applications

Research lines:

1 Numerical approximation of Partial Differential Equations:

Singularly perturbed problems

Fractional differential equations

(Prof. Eugene O’Riordan, Dublin City University, Ireland)

(Prof. Martin Stynes, Beijing Computational Research Center,
China)

2 Applications:

(Computational Hydraulics Group, Department of Fluid
Dynamics, University of Zaragoza)
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Singularly perturbed problems

Some applications: Environment, Fluid dynamics, Quantum
mechanics, Elasticity, Chemical reactor theory, Semiconductor
devices, Economics models, Physiological models.

Multi-scale character (narrow regions where the solution varies very
rapidly, while away from the boundary the solution varies slowly)
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Singularly perturbed problems

Reaction–convection–diffusion problems:
Lεu ≡ −ε∆u + a · ∇u + bu = f , (x , y) ∈ Ω = (0, 1)2,

+ boundary conditions.

⋆ 0 < ε ≪ 1: Singular perturbation parameter

⋆ ε∆u: Diffusion term

⋆ a · ∇u: Convection term

⋆ bu: Reaction term
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Singularly perturbed problems

Example:

Lu ≡ −ε∆u + (1 + x2)ux + (1 + x)u = 4x(1− x), (x , y) ∈ Ω = (0, 1)2,

u(x , y) = 0, (x , y) ∈ ∂Ω.
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Figure: Computed solution for ε = 10−6
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Singularly perturbed problems

Robust or uniformly convergent schemes:

sup
0<ε≤1

∥Uh − uh∥∞,d ≤ CN−p,

where C is a constant independent of N and (also) ε.

Fitted operator methods

(Quasi–)Uniform mesh + special discrete operator

Fitted mesh methods

Layer–adapted mesh + classical discrete operator

From the classical theory one has the crude bounds for the BVP:∥∥∥∥ ∂i+ju

∂x i∂y j

∥∥∥∥
∞

≤ Cε−(i+j).
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Singularly perturbed problems

Singularly perturbed convection-diffusion problem:

Lu ≡ −ε∆u + aux + bu = f , (x , y) ∈ Ω = (0, 1)2,

u given in ∂Ω,

where 0 < ε ≤ 1, a ≥ α > 0 and b ≥ β > 0.

Decompose the solution into

u = v + wT + wB + wR + wTR + wBR ,

where ∣∣∣∣ ∂i+jv

∂x i∂y j

∣∣∣∣ ≤ C (1 + ε2−(i+j)), 0 ≤ i + j ≤ 3,

wR(x , y) ∼ e−α(1−x)/ε, ∂i
xwR(x , y) ∼ ε−ie−α(1−x)/ε,

wB(x , y) ∼ e−
√

β/εy , ∂j
ywB(x , y) ∼ ε−j/2e−

√
β/εy ,

wTB(x , y) ∼ e−
√

β/εye−α(1−x)/ε.
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Singularly perturbed problems

Transition parameters of the
Shishkin mesh Ω̄N

σx = min

{
1

2
,
ε

α
lnN

}
σy = min

{
1

4
,

√
ε

β
lnN

}

 
1 − 𝜎𝑦 

1 − 𝜎𝑥 

𝜎𝑦 

The mesh is uniform in each one of the subintervals

x variable: [0, 1− σx ] ∪ [1− σx , 1],

y variable: [0, σy ] ∪ [σy , 1− σy ] ∪ [1− σy , 1].

Upwind finite difference scheme

LNU ≡ −ε
(
δ2xx + δ2yy

)
U + aD−

x U + bU = f , in ΩN ,

where δ2xx , δ
2
yy and D−

x are the standard central and backward
difference approximations.
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Singularly perturbed problems

Error analysis

The matrix associated to this scheme is an M-matrix and this
scheme is uniformly stable in the maximum norm.
Denote the global eh and truncation error τh by

eh = [u]h − Uh, LNeh = τh.

In general, one does not have parameter-uniform bounds of the
truncation error τh.

but . . .

Result of convergence

The upwind finite difference scheme on the Shishkin mesh satisfies

sup
0<ε≤1

∥Uh − uh∥∞,d ≤ CN−1 ln2N.
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Singularly perturbed problems
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Extensions to other singular perturbed problems

Discontinuous boundary conditions/forcing term

− ε∆u + (1 + x + y)ux + (2− xy)u = 64x(1− x)y(1− y),

(x , y) ∈ Ω = (0, 1)2,

u(x , y) = 0, (x , y) ∈ ∂Ω\{y = 0},

u(x , 0) =

{
2x , if 0 < x < 0.5,

−2(1− x), if 0.5 < x < 1.
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Extensions to other singularly perturbed problems

Singularly perturbed initial-boundary value problems with
discontinuous data: u(0−, t) ̸= u(x , 0+)

ut − εuxx + (1 + 3t2 − 2t)ux = 4x(1− x), (x , t) ∈ (0, 1)× (0, 1.5],

u(x , 0) = x3(1− x)3, x ∈ (0, 1),

u(0, t) = 1 + 0.25t2, u(1, t) = 0, t ∈ [0, 1.5].

e 
o 
:¡:: 

1.5 

-g 1 

{/) 

"O 
Q) 
-

:::, 

E o.5

o 

u 

o 

o 

11.5

Space variable o Time Variable 



Singularly perturbed problems Fractional differential equations Applications

Fractional differential equations

We consider the following class of problems

Lu :=Dα
t u − p

∂2u

∂x2
+ c(x)u = f (x , t),

(+ Initial and boundary conditions)

for (x , t) ∈ Q := (0, l)× (0,T ] and Dα
t is the Caputo fractional

derivative of order α with 0 < α < 1 and it is defined by

Dα
t u(x , t) :=

1

Γ(1− α)

∫ t

s=0
(t − s)−α ∂u

∂s
(x , s) ds.

The definition is not local (unlike classical derivatives).

Origins of Fractional Calculus: Letter from L’Hôpital to Leibniz in
1695.
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Anomalous dynamics in complex systems and non-local
temporal phenomena.

Anomalous diffusion (subdiffusion and superdiffusion processes)
explains a number of phenomena in several areas of physics,
astrophysics, finance, biology, ecology, geophysics, chemistry,
medicine, geology, bioengineering, among others.

Some applications:

Viscoelastic materials

Semiconductor materials

Financial markets

Transport in plasma

Control theory

Porous media (heterogeneous porous aquifer, contaminant
transport, seepage flow, fractured reservoirs,...)
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Fractional differential equations

The solution in Q = (0, π)× (0,T ] of the fractional heat equation

Dα
t u =

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x , 0) = sin(x),

is u(x , t) = Eα (−tα) sin(x) where

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
,

(Mittag-Leffler function)
(1846-1927)

and the derivatives of this function satisfy

E ′
α(−tα) = O(tα−1), E ′′

α(−tα) = O(tα−2) as t → 0.

Therefore, the derivatives of u blow-up at t = 0 since 0 < α < 1.
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Fractional differential equations
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Figure: Mittag-Leffler function and exact solution
u(x , t) = Eα (−tα) sin(x)
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Fractional differential equations

Two main difficulties:

i. Non-local operators

ii. Singular behaviour of the solution

Implications:

Difficulties in the convergence analysis of any numerical
method

Many open questions:

Type of fractional derivative (Caputo, Riemann-Liouville,
Patie-Simon,. . . )

Definition of the boundary conditions

Behaviour of the solution

Numerical scheme and error analysis, . . .
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Applications: Computational Hydraulics Group, UZ
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Figure: Simulation of rainfall/runoff in real catchments
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Applications: Computational Hydraulics Group, UZ

The model combines

2D shallow water flow model:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S+H+M, U = (h, qx , qy )

T .

fractional Green-Ampt infiltration law: it is based on the
Darcy’s law in the saturated area:

q = KαD
α
CH, 0 < α < 1,

where q is the vertical flux, Kα is the hydraulic conductivity
and H is the hydraulic head.
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Applications: Computational Hydraulics Group, UZ
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Figure: Hydrograph of outlet discharge Q

[PhD. Thesis (2019]
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